2. Задача Марковица. Наиболее часто встречаемая задача оптимизации портфеля была впервые описана Г. Марковичем и имеет следующую постановку. Допустим, что задан некоторый уровень доходности , ниже которого инвестор не хотел бы иметь ожидаемую доходность. Тогда оптимальный портфель выбирается среди всех возможных так, чтобы риск инвестиций, определяемый дисперсией доходности портфеля, был минимальным. В нашем простейшем случае задача Марковица может быть формализована следующим образом:
Рис. 4. Иллюстрация к задаче Марковица
Естественно предположить, что , иначе задача либо не имеет решения, либо становится тривиальной. Так как
- возрастающая функция на отрезке [0, 1], ее минимум достигается в минимально возможном значении
, определяемым условием
. В силу того, что
также возрастает на [0, 1], минимальное возможное значение
определяется уравнением
(см. рис. 4.). Таким образом, имеет место равенство
из которого находим значение :
Соответственно,
Таким образом, оптимальный портфель в задаче Марковица в простейшем случае безрискового и рискового активов определяется следующей парой:
Нетрудно убедиться, что ожидаемая доходность и среднее квадратическое отклонение по оптимальному портфелю в этом случае находятся по формулам:
3. Соотношение «риск—доходность». Предпочтение инвестора определяется минимизацией некоторой функции, связывающей риск и доходность каждого портфеля. Пусть, как и прежде, . Введем функцию рискованности следующим образом:
Здесь коэффициент q > 0 определяет предпочтение доходности перед риском для каждого инвестора. Если инвестор в большей степени предпочитает определять свои вложения доходностью, чем риском, то он выбирает коэффициент с большим значением. Если же для инвестора более важным является риск, то он выберет коэффициент q маленьким.
В итоге задача оптимизации портфеля в этом случае имеет следующий формальный вид:
Как видно, функция является квадратным трехчленом с положительным старшим коэффициентом. Поэтому график этой функции представляет параболу, ветви которой направлены вверх. Значит, функция имеет глобальный минимум, определяемый вершиной параболы. Координата
вершины параболы равна
(15)
Так как , координата
. Рассмотрим два различных варианта выбора оптимального портфеля. Первый вариант возникает в ситуации, когда
. Так как в этом случае функция
убывает на всем отрезке [0, 1], ее минимум на отрезке [0, 1] достигается в точке
. Нетрудно заметить, что неравенство
эквивалентно условию
Это удобно переписать в следующем виде:
(16)
Если это неравенство не выполнено и имеет место следующее соотношение:
то и минимум функции
на отрезке [0, 1] достигается в точке
. Тогда оптимальный портфель выбирается по второму варианту и равен
. В силу формулы (15) нетрудно получить его окончательный вид:
Сатьи по теме:
Классификация банков
Главным звеном кредитной системы являются банковские институты, среди которых роль лидера отводится коммерческим банкам.
Коммерческие банки занимают более четвертой части совокупных активов всех финансовых институтов. Схожие данные имеют место и во многих других странах с развитой рыночной эконом ...
Анализ финансовой устойчивости банка по доходу и прибыли
Определенные соотношения доходов и расходов банка дают возможность определить его финансовую прочность.
Анализ финансовой прочности основывается на распределении расходов банка по признаку их зависимости от размеров деятельности. Согласно этому расходы разделяют на условно-переменные и условно-по ...
Имущественное страхование
В страховой практике к имущественному страхованию относят любое страхование, не связанное с личным страхованием и страхованием ответственности
Под имуществом понимается не только конкретный предмет, но и группа вещей, предметов, изделий, а также средства транспорта, грузы, государственное имущест ...